一、综放工作面液压支架安装工艺(论文文献综述)
宋有福,刘晨曦,芦兴东[1](2021)在《浅谈煤矿安撤人员的素质教育及安全管理》文中指出装备提升、工艺改进、条件变化对煤矿的安撤工作提出了新的要求。做好煤矿安撤工作人员的素质教育和安全管理对于适应新形势需要、建设安撤专业化队伍、安全质量标准化创建,有着现实的意义。
李伟[2](2021)在《综放开采智能化控制系统研发与应用》文中研究表明为推动智能化综放开采技术的发展和应用,全面提升智能采煤的技术水平,针对自动放煤和工作面设备自动协调运行等行业共性难题,在放顶煤开采技术实践的基础上,开发了以"装备自动控制、数据自动采集、岗位无人值守"为目标的智能化综放控制系统,提出了综放开采智能化控制系统的技术路径和总体架构,配置了MG750/1860-WD采煤机、ZF12000/22/42D液压支架、SGZ1000/2400刮板输送机、BRW630/37.5乳化液泵站和DSJ140/260/3×500带式输送机等高可靠性综放开采成套装备,研发了液压支架记忆放煤、采煤机记忆截割、三角煤截割工艺、输送系统联动运行、泵站自动控制、手持终端等关键技术和控制系统,建设了"地面总监控调度-巷道区域控制-子系统"的三级控制体系。在鲍店煤矿7302工作面(平均厚度9.04 m)开展了工业性试验,实践中解决了工作面端头自动截割复杂作业工序、智能时序放煤参数优化等难题,并通过关键环节管控、智能开采工艺优化、重要岗位作业标准建立等手段,以保障常态化智能运行。结果表明:智能化综放系统实现了"采-放-运"的自动、协调运行,时序自动放煤率达70%以上,记忆截割开机率达到85%以上,工作面工作人数减少近60%,开采能效大幅提升,达到了年产千万吨的能力,实现了"自动控制为主,人工干预为辅"的智能综放生产模式。
马昆,翟文[3](2021)在《智能综放工作面自动化放煤工艺分析与研究》文中研究说明为了解决大采高厚煤层综放工作面自动化放煤常态化应用难题,对国家能源集团宁夏煤业有限责任公司枣泉煤矿综放工作面自动放煤工艺进行了研究,介绍了工作面概况和自动化控制系统配置情况,确立了综放工作面的放煤方式,提出了一种综放工作面放煤方法的下行和上行自动化放煤控制设计思路,建立了综放工作面自动化放煤程序,通过在郑州采煤机液压电控有限公司ZE07-04型电液控制系统的工业试验表明,该程序解决了大采高综放工作面自动化放煤工艺难题,实现了综放工作面自动化放煤。
褚志祥[4](2021)在《水峪煤矿孤岛工作面强矿压机理及顶板控制研究》文中认为
梁鑫,程海[5](2021)在《特厚煤层智能化综放开采技术与装备瓶颈综述》文中指出由于特厚煤层综放开采过程中工作面容易变形问题,需要加强开采岩层的结构研究,以提高出采率,降低开采中的安全事故发生率,采用智能化开采可以解决这些问题。本文主要概述了特厚煤层的智能化综放开采工艺与技术装备实践,分析了放煤的智能化、巷道智能化快速掘进、工作面直线度智能控制3个方面的技术与装备瓶颈,展望了可能的发展方向。本文提出通过解决采掘失调技术难题和实现新技术融合,有望突破特厚煤层智能化综放开采工艺与技术装备瓶颈,最终全面实现特厚煤层智能化综放开采的目标。希望通过此文为我国特厚煤层的安全、高效开采事业提供一定的技术支撑及参考。
史久林[6](2021)在《不同覆岩条件特厚煤层综放开采放煤规律研究》文中研究说明放煤规律始终是特厚煤层综放开采研究中关注的重点之一。本文以不连沟煤矿特厚煤层综放工作面为工程背景,开展破碎覆岩、层状覆岩和含破碎层的层状覆岩,三种覆岩条件下顶煤放出规律的相关研究。首先,根据顶煤放出过程中待放区内的顶煤堆积密度变化,结合散体颗粒的Bergmark-Roose运动模型,对顶煤放出规律进行理论分析,建立了匀变密度函数的放出体模型,通过理论分析确定了层状覆岩内的悬臂-铰接结构具有同步和异步的运动特征。其次,借助数值模拟软件中的线性和平行黏结力学接触模型,研究破碎覆岩、层状覆岩和含破碎层的层状覆岩对放煤规律的影响,揭示不同覆岩条件下放煤规律的内在联系,破碎覆岩物理力学性质与顶煤放出量间存在二次函数的关系,建立了破碎覆岩条件下全工作面平均顶煤回收率的量化模型;层状覆岩中悬臂结构失稳抑制顶煤放出作用最强,其次是铰接结构,层状覆岩中的破碎层能够缓冲覆岩结构运动的抑制作用。最后,基于研究成果提出水力压裂弱化顶板增加破碎岩层厚度的技术措施,不仅有助于提高顶煤回收率,同时能够有效弱化工作面矿压显现强度。论文主要研究成果如下:(1)建立破碎顶煤颗粒放出过程中的堆积密度变化的匀变密度函数放出体模型。受采空区颗粒移动边界和支架的约束,顶煤堆积密度与放出截面、距放煤口距离呈正相关性。同时,层状覆岩内的多层坚硬岩层破断形成的“悬臂-铰接”结构,进一步改变了顶煤放出过程中的堆积密度,建立以放出截面半径为自变量的密度变化函数,结合Bergmark-Roose散体运动模型,建立匀变密度函数放出体模型。相较传统的恒定密度放出体模型,匀变密度模型横向变形量增大37.14%;径向呈压缩状态,压缩变形量减小27.27%,顶煤的放出体发育过程中横向扩展区域大于径向扩展区域。产生这种变化的原因是破碎顶煤堆积密度随距放煤口的距离变化,从而改变了放出体的形态。引入匀变密度放出体模型更能真实的反应顶煤放出体的变化规律。(2)破碎岩层条件下岩层中的层厚、岩块粒径和摩擦系数与顶煤放出量均呈二次函数关系,存在影响顶煤放出量的极大值和极小值。破碎岩层厚度与顶煤厚度为1:1时,顶煤的初始放煤量、周期放煤量和回收率最大。破碎煤岩粒径比在1:1.6~1.7的区间内,顶煤的初始放煤量、周期放煤量和回收率最小;破碎煤岩摩擦系数比为1:4.2时,顶煤的初始放煤量、周期放煤量和回收率最大。(3)破碎岩层条件下顶煤放出体高度随工作面推进而呈现不同的变化规律,但是周期放煤循环内的平均放出体高度大于1倍支架高度,小于2倍支架高度。放出体近似“下部三角形-上部局部圆形”的组合形态特征。初始放煤循环的放出体高度近似等于煤层厚度,且放出体形态呈现“下部三角形-上部局部椭圆”形态特征。由此建立破碎岩层条件下的全工作面顶煤回收率的量化模型。(4)对比研究了层状覆岩与含破碎岩层的层状覆岩条件下的放煤规律。层状覆岩的条件下,不规则垮落岩层的破断岩块的嵌入抑制了顶煤放出体形态的发育,使得各个放煤循环过程中放出体形态在“三角形”、“三角形-局部圆”和“三角形-局部椭圆”之间随机形成。悬臂结构失稳使得支架尾梁上部的待放顶煤区内强力链增加且向放煤口侧转移,改变了传统研究中的随顶煤放出待放区顶煤力链减弱的趋势。强力链的增加抑制破碎顶煤向放煤口的移动趋势,且破断岩块嵌入改变了煤岩分界线,使得顶煤放出量急剧减小,铰接结构失稳使得支架尾梁上部的待放顶煤区内强力链增加,但增加数量小于悬臂结构失稳,且其下部规则垮落带内岩块形成挤压拱,使得顶煤放出量虽然减小但影响程度小于悬臂结构失稳。悬臂结构的失稳对顶煤回收率影响最为显着。破碎层的存在能够有效弱化上部覆岩运动对顶煤放出过程的影响。(5)破碎覆岩、层状覆岩和含破碎层的层状覆岩对顶煤放出规律的影响,最终体现在周期放煤循环过程中顶煤放出体形态变化,但是对初始放煤阶段的顶煤放出体形态控制作用有限。(6)通过现场分析表明,特厚煤层综放工作面“大-小”周期来压时顶煤回收率减小。采用水力压裂技术进行顶板弱化,能够减小覆岩运动对顶煤放出规律的影响,弱化后的顶煤回收率提高了15.08%。
霍昱名[7](2021)在《厚煤层综放开采顶煤破碎机理及智能化放煤控制研究》文中研究说明随着我国矿业现代化进程的稳步推进,采矿装备的电气化带动了采矿技术的快速发展,开采规模也随之不断扩大。融合大数据、云计算、人工智能以及工业5G等新型信息技术的智能化采矿方法,不仅能达到“无人”矿井的行业目标,更成为保障我国能源安全与促进经济高质量发展的全新机遇。尽管信息化技术成熟度不断提高,综采放顶煤技术在我国经过四十余年的发展也已经取得明显进步,但智能化综放开采仍然存在一些问题亟待解决,主要体现在综放开采理论、技术与智能化开采实践联系不紧密、应用程度不高等方面。厚煤层综放开采智能化的关键是放煤过程的智能化,须在掌握顶煤破碎、放出规律的基础上,结合智能化探测、控制技术手段,建立智能化放煤控制体系。本文根据王家岭煤矿12309智能化建设工作面为背景,研究着眼于综放开采全过程,以顶煤采动应力场演化规律为切入点,揭示顶煤在综放开采过程中的破碎机理,阐明散体顶煤由后刮板输送机放出的放出特性,提出合理的放煤方法,为厚煤层智能化放煤的增产增效提供理论支撑。在理论分析的基础上,提炼实现智能化放煤所需的各项关键技术,并将其综合应用,为厚煤层智能化放煤的实现提供重要的技术支撑。得到的主要结论有:(1)基于主应力空间,研究了厚煤层综放开采过程中顶煤受力单元主应力场演化规律。利用有限差分数值模拟方法,考虑液压支架工作阻力对顶煤的支撑作用,阐明了高水平应力条件下顶煤主应力值变化及方向偏转特性,在此基础上将顶煤划分为原岩应力区、中间主应力升高区、应力显着升高区、应力峰后降低区及液压支架控顶区5个分区,得到了高水平应力条件下顶煤主应力驱动路径,为后续顶煤渐进破碎机理的研究提供了应力边界条件。(2)基于弹塑性力学理论,明析了描述顶煤应力状态的平均应力、偏应力及应力Lode角3个参数在综放开采中的演化过程,揭示了上述3个参数在各顶煤分区中的演化特性,基于高精度工业CT扫描技术,运用合成岩体(SRM)数值建模方法,重构了裂隙煤体三维数值模型,运用“有限差分-颗粒流”耦合数值方法,建立了“连续-非连续”耦合真三轴数值模型,在指定主应力边界条件下模拟了顶煤渐进破碎过程,阐明了试件裂隙发育迹线及破碎块度分布规律,实测了放落顶煤破碎块度分布特性,与数值模拟结果进行了类比分析,证明了数值方法可靠性,为后续散体顶煤运移及放出规律的研究提供了数据支撑。(3)基于“有限差分-颗粒流”耦合算法,建立了“连续-非连续”耦合综放开采数值模型,开发了“随机自由落体-逐步伺服夯实”的耦合建模方法,反演了综放开采从工作面设备安装至放煤稳定的全过程,得出了煤矸分界线形态演化的3个特性,并以此为依据改进了“Hook”函数,使之适于描述煤矸分界线形态,以改进的“Hook”函数对煤矸分界线形态进行了拟合,揭示了综放开采煤矸分界线形态从初次放煤到周期放煤的演化规律,将其演化历程分为了初采影响阶段、过渡放煤阶段和周期放煤阶段3个阶段,为后续基于智能化放煤控制技术的放煤工艺选择提供了顶煤位移边界条件。(4)将整个放煤过程划分为放煤开始前、放煤过程中及放煤结束后3个阶段,分析了各阶段内的智能化控制技术,包括:放煤开始前的顶煤厚度探测、采煤机惯导定位,放煤过程中的放煤机构精准监测控制、煤矸识别,放煤结束后的采出量实时监测。将上述智能化技术有机结合,建立了智能化放煤控制技术体系,从自感知、自学习、自决策及自执行4个层面,揭示了各智能化放煤控制技术的内在联系,最终构建了智能化放煤控制的基本结构,为后续智能化放煤工艺参数选择及实现智能化放煤控制提供了技术依据。(5)基于智能化放煤控制技术体系,以煤矸分界线演化特性研究结果为顶煤位移边界条件,改进了Bergmark-Roos理论,建立了周期放煤时间预测理论模型,提出了放煤口启停判别的综合判别方法,建立了包含多台液压支架的“有限差分-颗粒流”耦合数值模型,优化得出了适用于现阶段智能化综放工作面的合理放煤工艺参数,最终于王家岭煤矿12309工作面建立了智能化综放示范工作面,升级更新了工作面主要生产设备及组织关系,验证智能化放煤控制各项技术的可靠性,实现了较好的经济效益和社会效益。
粱晓敏[8](2021)在《厚煤层综放工作面区段煤柱合理宽度研究》文中认为煤矿应用20 m宽的区段煤柱护巷造成煤炭资源的极大浪费,合理宽度的区段煤柱不仅能够提升煤炭资源回收率,还可以优化回采巷道所处应力环境,降低回采巷道的维护难度。相较于沿空留巷等无煤柱开采技术,留设合理宽度区段煤柱因其对矿井生产技术条件及地质条件要求不高、前期投入较少、工艺相对简单等优点而拥有广阔的应用前景。目前经验估算法、载荷估算法、弹性核理论计算、内应力场理论计算法、极限平衡理论计算法等煤柱宽度的理论计算方法各有优缺。本文以黑龙关煤业11602综放工作面为研究背景,在总结吸收前人研究成果的基础上,结合区段煤柱覆岩结构及运动特征,对工作面回采过程中煤层上方直至地表覆岩与区段煤柱的协同受力情况进行分析,认为区段煤柱在其上方岩柱自重和采空区低位未完全垮落岩层载荷所产生的转移集中力、弯曲下沉带高位覆岩挠曲变形所产生集中力共两部分应力作用下产生变形。本文将尚未回采的大范围实体煤区域及其覆岩视为刚性体,煤柱简化为弹性体,回采工作面覆岩中弯曲下沉带范围内的高位覆岩视为两端简支在刚性岩体上的岩梁,建立覆岩-煤柱协同受力力学模型,阐明了区段煤柱受载变形的应力来源,并推导出该力学模型中煤柱所受集中力F的表达式。通过对煤柱两侧支护体系对煤柱煤体作用机理的分析,认为区段煤柱两侧支护体系对煤柱的约束力可以阻止采掘影响下煤柱内弱面的扩张,减小煤柱所受拉应力,从而提高煤柱的抗剪强度,提升区段煤柱整体的强度,基于此提出煤柱在其两侧不同支护强度下区段煤柱极限支承强度理论计算公式。系统分析所建立覆岩-煤柱协同受力力学模型,结合黑龙关煤业11#煤层具体参数,计算得到黑龙关煤业11603工作面沿空巷道留设区段煤柱的合理宽度为8 m,并结合FLAC3D数值模拟软件对留设8 m宽区段煤柱时上下区段工作面掘采全过程中沿空回采巷道及煤柱的应力分布特征、围岩位移情况及塑性区发育情况进行研究,结果表明8 m宽的区段煤柱能够保证下区段工作面的安全回采。通过对综放工作面沿空回采巷道围岩的变形破坏特征及综放工作面沿空回采巷道的围岩控制原理进行分析,结合黑龙关煤业的具体情况,提出沿空巷道围岩控制方案,以确保区段煤柱的稳定,并减小沿空巷道在反复动载作用下的围岩变形。现场留设8 m宽区段煤柱进行11603工作面回风顺槽掘进作业,沿空回采巷道能够在上区段工作面的采动影响及沿空巷道的掘进影响下保证煤柱的稳定性及回采巷道的正常使用,现场工业性试验验证了覆岩-煤柱协同受力模型计算区段煤柱宽度方法的合理性,能够为其他矿井区段煤柱留设提供参考。
刘子坤[9](2021)在《某矿综放工作面矿压规律及煤柱尺寸优化研究》文中研究指明
吴桐,尉瑞,刘清,魏文艳[10](2021)在《综放工作面智能放煤工艺研究及应用》文中研究说明传统的放顶煤控制主要依靠人工放煤控制,采用单轮顺序放煤。配有电液控制系统的工作面主要采用程序控制与人工补放结合的双轮顺序放煤方式,如果放煤控制实施不充分,会大幅降低煤炭采出率,如果放煤过程中掺有大量矸石,会降低煤炭的开采质量。针对上述问题,研究了综放工作面智能放煤工艺。分析了综放工作面自动化放煤工艺流程,指出要实现智能放煤工艺,需要在自动化放煤工艺的基础上,对综放工作面采煤机、液压支架、刮板输送机等设备进行智能升级,即在综放支架上安装音视频监视系统,监测是否有大块煤堵住放煤口、影响顶煤放出等异常情况;在后部刮板输送机安装电动机电流监测系统,实现放落煤流的自动控制,同时具备人工干预功能,即补放和停放功能;在带式输送机机尾处安装灰分检测系统对灰分是否增多进行在线分析;在综放支架上安装基于振动传感器的煤矸识别装置,根据振动传感器数据分辨矸石下落量,辨识是否有严重混矸情况。结合智能放煤工艺流程,为王家岭煤矿12309综放工作面定制了智能放煤方案:基于自动化顺序放煤与间隔放煤工艺、振动信号的煤矸识别控制和人工放落煤流控制技术实现该工作面智能化放煤,实际应用结果验证了智能放煤工艺的有效性。
二、综放工作面液压支架安装工艺(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、综放工作面液压支架安装工艺(论文提纲范文)
(1)浅谈煤矿安撤人员的素质教育及安全管理(论文提纲范文)
1 实施煤矿安撤专业化素质培训教育 |
1.1 推行煤矿安撤专业管理安全培训 |
1.2 推行煤矿安撤专业技能实操培训 |
1.3 推行了轮训制安撤技能提升法 |
1.4 推行了“三系级考核”“师带徒”等措施 |
1.5 实施煤矿安撤“五描述一操作”学习演练及考核 |
2 实施煤矿安撤专业化安全管理 |
2.1 实施安撤专业“633安全管理”法 |
2.2 实施安撤重点工程“跟班包保”制度 |
2.3 建立煤矿安撤安全基础管理制度 |
2.4 发挥生产技术对煤矿安撤管理的保障作用 |
2.5 调整改进煤矿安撤生产工艺 |
3 结论 |
(2)综放开采智能化控制系统研发与应用(论文提纲范文)
0 引言 |
1 工作面及装备概况 |
1.1 煤层概况 |
1.2 工作面设备配置 |
2 综放工作面智能化控制系统 |
2.1 总体技术架构 |
2.2 工作面智能化子系统 |
2.2.1 工作面监控中心 |
2.2.2 液压支架电液控制系统 |
2.2.3 采煤机控制系统 |
2.2.4 输送机通信控制系统 |
2.2.5 泵站控制系统 |
2.2.6 工作面视频系统 |
2.2.7 工业以太网及无线信号 |
2.2.8 手持终端 |
2.2.9 巷道输送带智能调速系统 |
2.2.1 0 人员定位及环境监测联动 |
3 智能综放技术系统应用 |
3.1 系统工业试验原则 |
3.2 系统工业性试验成果 |
4 结论 |
(3)智能综放工作面自动化放煤工艺分析与研究(论文提纲范文)
0 引言 |
1 工作面概况 |
1.1 煤层顶底板 |
1.2 主要设备配套 |
2 自动化控制系统配置 |
3 液压支架自动放煤参数确定 |
3.1 放煤工艺 |
3.1.1 采放比的确定 |
3.1.2 放煤步距的确定 |
3.2 放煤方式[10-11] |
3.2.1 采放平行作业 |
3.2.2 多轮次顺序放煤作业 |
3.2.3 返机反向逐架放煤 |
3.2.4 安排专人检查放煤工作 |
3.2.5 放煤具体操作要求 |
4 自动放煤控制设计及实现逻辑模型 |
4.1 自动放煤控制设计 |
4.1.1 下行放煤控制设计 |
4.1.2 上行放煤控制设计 |
4.2 自动放煤时间控制设计 |
4.3 自动放煤实现模型 |
4.3.1 采煤机下行自动放煤 |
4.3.2 采煤机上行自动放煤 |
4.4 自动放煤程序执行 |
5 结论 |
(5)特厚煤层智能化综放开采技术与装备瓶颈综述(论文提纲范文)
0 引言 |
1 智能化综采的概念与特征 |
2 综采放顶煤开采技术与装备 |
2.1 特厚煤层智能化综采放开采技术与装备实践 |
2.2 特厚煤层综放开采智能化技术与装备瓶颈 |
2.2.1 放煤的智能化技术与装备瓶颈 |
2.2.2 巷道智能化快速掘进技术与装备瓶颈 |
2.2.3 工作面直线度智能控制技术与设备 |
3 智能化开采技术发展前景展望 |
3.1 全面推进特厚煤层综采智能化技术 |
3.2 有限无人化开采目标 |
4 结语 |
(6)不同覆岩条件特厚煤层综放开采放煤规律研究(论文提纲范文)
摘要 |
abstract |
1 绪论 |
1.1 研究背景及意义 |
1.2 特厚煤层综放开采国内外研究现状 |
1.2.1 特厚煤层综放开采覆岩运动规律研究现状 |
1.2.2 综放开采顶煤冒放性研究现状 |
1.2.3 顶煤块度对放出规律影响的研究现状 |
1.2.4 顶煤放出规律研究现状 |
1.3 问题的提出 |
1.4 研究内容及思路 |
1.4.1 主要研究内容 |
1.4.2 研究方法及技术路线 |
2 特厚煤层顶煤放出体及层状覆岩运动特征研究 |
2.1 破碎顶煤放出规律 |
2.1.1 破碎顶煤的破坏机理分析 |
2.1.2 破碎顶煤的滑移失稳 |
2.1.3 理想条件下顶煤放出体模型 |
2.2 堆积密度对顶煤放出体模型的影响 |
2.3 支架尾梁对顶煤放出规律的影响 |
2.4 特厚煤层综放开采层状覆岩结构演化 |
2.4.1 覆岩结构形态分析 |
2.4.2 组合悬臂结构运动特征 |
2.4.3 铰接结构垮落特征 |
2.4.4 特厚煤层综放工作面矿压显现特征 |
2.5 本章小结 |
3 不同覆岩条件下顶煤放出规律的数值模拟研究 |
3.1 特厚煤层综放开采数值模型构建 |
3.1.1 模拟接触参数的确定 |
3.1.2 整体颗粒力学模型建立 |
3.2 破碎岩层对顶煤放出规律的影响分析 |
3.2.1 不同破碎岩层厚度对顶煤放出规律的影响 |
3.2.2 破碎岩块粒径对顶煤放出规律的影响 |
3.2.3 颗粒摩擦系数对顶煤放出规律的影响 |
3.2.4 放出体形态变化规律 |
3.2.5 顶煤回收率量化 |
3.3 层状覆岩对顶煤放出规律的影响 |
3.3.1 初始模型建立 |
3.3.2 层状覆岩运动与顶煤放出规律的研究 |
3.3.3 层状覆岩运动与顶煤回收率的影响 |
3.4 含破碎岩层的层状覆岩对顶煤放出规律的影响 |
3.4.1 初始模型建立 |
3.4.2 含破碎岩层覆岩运动与顶煤放出规律的研究 |
3.4.3 含破碎层的覆岩运动对顶煤回收率的影响 |
3.5 本章小结 |
4 含破碎岩层的层状覆岩对放煤规律的试验研究 |
4.1 工程背景 |
4.2 煤岩物理力学性质测试 |
4.3 物理相似模拟试验设计 |
4.3.1 试验装置设计 |
4.3.2 模拟试验设计方案 |
4.4 模拟试验结果分析 |
4.4.1 初始放煤循环阶段煤岩分界线动态演化 |
4.4.2 周期放煤循环阶段煤岩分界线动态演化 |
4.4.3 覆岩运动与煤岩分界线变化规律 |
4.4.4 覆岩运动与顶煤回收率分析 |
4.5 本章小结 |
5 特厚煤层综放工作面顶煤回收率优化措施 |
5.1 特厚煤层综放工作面概况 |
5.2 工作面上部覆岩结构形态判定 |
5.3 局部顶板弱化措施 |
5.4 弱化效果分析 |
5.4.1 弱化前矿压显现与顶煤回收率分析 |
5.4.2 弱化后矿压显现与顶煤回收率分析 |
5.5 微震系统监测弱化效果 |
5.5.1 监测系统布置方案 |
5.5.2 微震监测能量事件分析 |
5.6 本章小结 |
6 结论、创新点及展望 |
6.1 结论 |
6.2 创新点 |
6.3 不足与展望 |
参考文献 |
致谢 |
作者简历 |
学位论文数据集 |
(7)厚煤层综放开采顶煤破碎机理及智能化放煤控制研究(论文提纲范文)
摘要 |
ABSTRACT |
第1章 绪论 |
1.1 研究背景及意义 |
1.2 国内外研究现状 |
1.2.1 综放开采技术发展历程 |
1.2.2 顶煤采动应力场演化规律 |
1.2.3 顶煤破碎机理及冒放性评价 |
1.2.4 顶煤运移特性及放出规律 |
1.3 研究内容与方法 |
1.3.1 研究内容 |
1.3.2 研究方法 |
1.3.3 技术路线 |
第2章 厚煤层综放开采采动应力场演化机制 |
2.1 顶煤应力状态描述及数值模拟方案 |
2.1.1 基于主应力空间的顶煤应力状态 |
2.1.2 煤岩层赋存条件及力学参数测定 |
2.1.3 数值模型及方法 |
2.2 高水平应力条件下顶煤主应力场演化规律 |
2.2.1 主应力分布规律及数值监测方法 |
2.2.2 主应力值演化规律 |
2.2.3 应力主轴偏转特性 |
2.3 顶煤主应力演化路径 |
2.3.1 主应力场顶煤分区方法 |
2.3.2 顶煤分区特征位置及应力路径 |
2.4 本章小结 |
第3章 厚煤层综放开采顶煤破碎机理 |
3.1 各顶煤分区内相关参数演化特性 |
3.2 裂隙煤体三维重构及细观参数标定 |
3.2.1 高精度工业CT扫描试验 |
3.2.2 节理裂隙数值重构 |
3.2.3 基于SRM方法的裂隙煤体数值建模 |
3.3 主应力路径下顶煤破碎规律 |
3.3.1 数值模型及主应力加载流程 |
3.3.2 裂隙煤体渐进破碎迹线 |
3.3.3 裂隙煤体破碎块度分布及现场实测 |
3.4 本章小结 |
第4章 厚煤层综放开采顶煤运移放出规律 |
4.1 数值模拟方法及前期结果 |
4.1.1 FDM-DEM耦合数值模型 |
4.1.2 本构模型及模拟参数分析 |
4.1.3 数值模拟流程及放煤前结果分析 |
4.2 初次放煤过程顶煤运移放出规律 |
4.2.1 初放放出体形成过程 |
4.2.2 初放松动体演化特性 |
4.2.3 初放煤矸分界线动态分布 |
4.3 周期放煤过程顶煤运移放出规律 |
4.3.1 顶煤放出体演化历程 |
4.3.2 放煤松动体范围扩展规律 |
4.3.3 煤矸分界线形态特性 |
4.4 本章小结 |
第5章 智能化放煤控制方法及放煤工艺参数 |
5.1 智能化放煤控制过程及控制体系 |
5.1.1 放煤前顶煤厚度探测及采煤机定位 |
5.1.2 放煤中放煤机构动作启停判别及控制 |
5.1.3 放煤后放出量实时监控 |
5.1.4 智能化放煤控制体系 |
5.2 基于放煤时间预测模型的放煤终止原则 |
5.2.1 放煤时间预测模型 |
5.2.2 重力加速度修正系数的标定 |
5.2.3 放煤时间预测模型的应用 |
5.3 放煤步距与放煤顺序优化 |
5.3.1 放煤步距及放煤顺序优化方法 |
5.3.2 不同放煤顺序下放出体形态特性 |
5.3.3 不同放煤顺序下顶煤放出量及回收率 |
5.4 本章小结 |
第6章 厚煤层智能化放煤工业性试验 |
6.1 12309 智能化综放工作面建设概况 |
6.1.1 工作面人员配置及分工 |
6.1.2 顺槽协同放煤控制中心 |
6.1.3 地面放煤监测与控制中心 |
6.1.4 智能化放煤控制流程 |
6.2 智能化放煤控制技术试验 |
6.2.1 放煤前顶煤厚度探测及采煤机定位 |
6.2.2 放煤中放煤机构动作启停判别及控制 |
6.2.3 放煤后采出量实时监测 |
6.2.4 放煤远程集中控制软件 |
6.3 智能化工作面建设效益分析 |
6.4 本章小结 |
第7章 结论与展望 |
7.1 结论 |
7.2 主要创新点 |
7.3 展望 |
参考文献 |
攻读学位期间取得的科研成果 |
致谢 |
(8)厚煤层综放工作面区段煤柱合理宽度研究(论文提纲范文)
摘要 |
ABSTRACT |
第1章 绪论 |
1.1 选题背景及意义 |
1.2 国内外研究现状 |
1.2.1 综放开采沿空巷道覆岩破断规律研究现状 |
1.2.2 区段煤柱合理宽度研究现状 |
1.2.3 区段煤柱稳定性研究现状 |
1.3 存在的问题及发展趋势 |
1.4 研究内容、方法与技术路线 |
第2章 工程地质特征及矿压规律分析 |
2.1 工程概况 |
2.1.1 煤层覆存条件及回采工艺 |
2.1.2 工作面巷道布置 |
2.2 围岩力学参数测试 |
2.2.1 取样方案及试件加工 |
2.2.2 钻孔窥视 |
2.2.3 岩石力学实验 |
2.3 留设20 m煤柱时11602 综放工作面矿压显现规律分析 |
2.3.1 矿压观测目的及内容 |
2.3.2 两巷矿压显现规律 |
2.4 本章小结 |
第3章 综放工作面覆岩结构及稳定性研究 |
3.1 厚煤层综放工作面覆岩运动特征 |
3.1.1 综放工作面支架与围岩力学系统模型 |
3.1.2 综放工作面回采特点分析 |
3.2 上区段工作面侧向老顶一次破断结构分析 |
3.2.1 侧向老顶一次破断煤体应力扰动分析 |
3.2.2 侧向老顶一次破断结构分析 |
3.3 沿空掘巷对覆岩破断结构稳定性影响分析 |
3.3.1 掘巷前覆岩结构稳定性分析 |
3.3.2 掘巷后覆岩结构稳定性分析 |
3.3.3 沿空掘巷应力扰动分析 |
3.4 下区段工作面回采对覆岩结构稳定性影响分析 |
3.4.1 下区段工作面回采对覆岩结构运动过程 |
3.4.2 下区段工作面回采对沿空巷道覆岩结构的扰动分析 |
3.5 本章小结 |
第4章 合理煤柱宽度研究 |
4.1 区段煤柱留设原则 |
4.2 合理煤柱宽度的理论研究 |
4.2.1 覆岩结构分布特征与煤柱变形机制分析 |
4.2.2 覆岩-煤柱力学模型建立与分析 |
4.2.3 基于支护强度影响的区段煤柱极限支承强度理论计算 |
4.2.4 煤柱宽度理论计算 |
4.3 区段煤柱合理宽度数值模拟研究 |
4.3.1 模型建立及模拟内容 |
4.3.2 上区段工作面回采后侧向应力分布规律分析 |
4.3.3 沿空巷道掘进时围岩应力、位移及塑性区分布特征 |
4.3.4 下区段工作面回采时围岩应力、塑性区及位移分布特征 |
4.4 本章小结 |
第5章 沿空巷道围岩控制对策 |
5.1 沿空回采巷道围岩变形破坏特征分析 |
5.2 综放工作面沿空回采巷道围岩控制原理 |
5.3 巷旁切顶卸压技术改善围岩应力环境分析 |
5.3.1 巷旁切顶卸压原理分析 |
5.3.2 巷旁切顶卸压方案设计 |
5.4 锚网索梁注支护方案研究与设计 |
5.4.1 回采巷道围岩锚杆支护理论 |
5.4.2 回采巷道支护方案设计原则 |
5.4.3 锚网索梁注支护方案设计 |
5.5 现场工业性试验分析 |
5.5.1 矿压监测内容及方案设计 |
5.5.2 矿压观测结果分析 |
5.6 本章小结 |
第6章 结论与展望 |
6.1 主要结论 |
6.2 不足与展望 |
参考文献 |
攻读学位期间取得的科研成果 |
致谢 |
(10)综放工作面智能放煤工艺研究及应用(论文提纲范文)
0 引言 |
1 综放工作面智能放煤工艺 |
1.1 放顶煤工艺 |
1.2 单架放煤控制工序 |
1.3 自动化放煤工艺流程分析 |
1.4 智能放煤工艺流程 |
2 智能放煤工艺应用 |
2.1 定制自动化放煤工艺 |
2.1.1 顺序放煤 |
2.1.2 间隔放煤 |
2.2 人工放落煤流控制 |
2.3 煤矸识别的应用 |
3 结论 |
四、综放工作面液压支架安装工艺(论文参考文献)
- [1]浅谈煤矿安撤人员的素质教育及安全管理[J]. 宋有福,刘晨曦,芦兴东. 山东煤炭科技, 2021(12)
- [2]综放开采智能化控制系统研发与应用[J]. 李伟. 煤炭科学技术, 2021(10)
- [3]智能综放工作面自动化放煤工艺分析与研究[J]. 马昆,翟文. 中国煤炭, 2021(08)
- [4]水峪煤矿孤岛工作面强矿压机理及顶板控制研究[D]. 褚志祥. 中国矿业大学, 2021
- [5]特厚煤层智能化综放开采技术与装备瓶颈综述[J]. 梁鑫,程海. 矿产勘查, 2021(06)
- [6]不同覆岩条件特厚煤层综放开采放煤规律研究[D]. 史久林. 煤炭科学研究总院, 2021(01)
- [7]厚煤层综放开采顶煤破碎机理及智能化放煤控制研究[D]. 霍昱名. 太原理工大学, 2021(01)
- [8]厚煤层综放工作面区段煤柱合理宽度研究[D]. 粱晓敏. 太原理工大学, 2021(01)
- [9]某矿综放工作面矿压规律及煤柱尺寸优化研究[D]. 刘子坤. 中国矿业大学, 2021
- [10]综放工作面智能放煤工艺研究及应用[J]. 吴桐,尉瑞,刘清,魏文艳. 工矿自动化, 2021(03)