一、基坑支护综合处理技术(论文文献综述)
苏颜曦[1](2021)在《桩锚支护作用下深基坑变形监测分析》文中提出针对日渐突出的深基坑边坡问题(基坑边坡变形、鼓胀、坍塌等),以西安市某深基坑支护工程为研究对象,借助于搜集资料、现场监测手段,进行了深基坑桩锚支护设计、监测分析、数值模拟分析及优化设计,得到了一些有价值的认识和结论:1、根据西安某深基坑支护工程的工程概况、场地条件,以及深基坑特点拟定“钻孔灌注桩+预应力锚索”深基坑支护工程:设计灌注桩桩间距1.6m,桩径0.8m,桩身嵌固深度7m;锚索3排,锚索长度18m(锚固段10m)。2、拟定深基坑监测方案,即,深基坑桩锚支护结构施工前,选择31个桩孔预埋测斜管做为桩体位移变形监测点,桩顶布设45个监测点,监测桩顶水平位移、桩顶竖向位移、桩体深层位移;在深基坑边5m与10m处布设沉降监测点38个,监测施工过程中坑边沉降。监测结果表明:(1)桩顶水平位移随开挖深度增加越来越大,但施加锚索后都有不同程度回弹;(2)基坑开挖0~3.3m过程中,各测点桩体深层位移曲线都是顶部大,底部小,呈现“上倾式”变形形式,基坑开挖3.3~13.1m过程中,桩体深层水平位移曲线都呈现“月牙式”变形形式,且锚索对支护桩变形限制作用良好;(3)基坑开挖深度较浅时,沉降量曲线呈现“桩顶大,距离桩顶远处小”的“漏斗型”变形形式,随着开挖深度越来越深,距坑边5m处沉降量大,两边沉降量小,沉降曲线呈“抛物线”型。3、基于监测数据,利用FLAC3D建立桩锚支护结构模型,进行模拟分析,模拟结果表明:(1)随着深基坑开挖,桩顶水平位移逐渐增大,桩体深层水平位移先变大,后变小,呈现出“桩中间大,两边小”的变形形式;(2)深基坑坑边沉降影响范围是有限的,在距坑边18m范围内。最大沉降量在距离坑边6m左右。4、基于监测和模拟分析,优化了桩锚支护结构:最佳桩径是1.2m,最佳桩身嵌固深度是6m(约为0.46H,H为基坑开挖深度13.10m)。模拟结果显示,相比于原设计方案,最大桩顶水平位移减少了2.03mm,最大桩体深层位移减少了2.17mm,最大深基坑坑边沉降减少了1.87mm。
燕啸东[2](2021)在《列车振动荷载作用下基坑支护结构动力响应的研究》文中指出随着我国基础建设的快速发展,目前许多大、中型城市规划的地铁线路已经构成网线,成为各大、中型城市轨道交通的主要组成部分。地铁行驶时的振动及其传播将使许多已有建筑与在建工程承受动载荷的影响。尤其对于在建项目,研究地下列车振动荷载对其影响规律,针对薄弱区域采取适当加固措施是工程领域关注的重点问题之一。本研究着眼于实际工程案例,研究列车振动荷载作用下基坑支护结构的动力响应规律,主要内容:首先,针对深圳市罗湖区某中学新建校区项目进行数据采集与建模。该项目北侧距9号线(在运营)最近约14m,西侧距离6号线盾构(未运营)区间最近距离约74.0m。支护结构北侧长期受到地铁振动作用影响,以该工程为研究背景。根据实地勘察出的水文地质条件,得到在建工程区域土层各项参数以及基坑支护结构的外形尺寸和开挖深度。其次,针对有限域波动响应问题,提出功能梯度粘弹性人工边界层的设置方法。基于COMSOL软件进行波动问题数值模拟,进行二维结构与三维结构波动问题的数值模拟验证。结果表明,在时域分析中该人工边界层较其他传统方法更能有效降低人工边界对实际波动的影响。同时对比二维结构与三维结构,得到二维结构功能梯度粘弹性人工边界的吸收效果优于三维结构,因此针对三维结构,我们进一步提出了基于功能梯度粘弹性人工边界层与低反射边界组成的复合边界。数值算例表明,该人工边界可以有效达到低反射、无畸变、迅速衰减的要求,被用于本文的后续研究中。再者,本文在前人对于列车振动模型研究基础上,使用MATLAB进行编程,将加速度转化为荷载,作为列车振动荷载作用力。并通过处理后的输入加速度数据的最大频率,来确定网格尺寸大小和时间步长。最后,采用COMSOL软件,对不同开挖深度下支护结构受到的列车振动荷载作用情况建模,通过数值模拟分析受列车振动荷载作用下不同开挖深度时支护结构的动力响应。模拟结果表明:随着开挖深度的增大,受到列车振动荷载作用支护结构位移和应力峰值越大。分析了支护结构桩内拉压力分布情况、及支护结构Mises等效应力分布。其中桩顶、桩底和冠梁位置受力更大;后排桩受到列车振动荷载作用时应力状态比较平稳;支护结构的前排桩桩顶、桩底和冠梁是受到振动作用时的薄弱位置;对比了远隧道侧支护结构的动力响应和近隧道侧动力响应情况,由于动载在土的传播过程中会衰减,当振动传播到远隧道侧时,峰值已经衰减到了输入加速度的3%~8%,远隧道侧的动力响应已经非常弱了。本文着眼于深圳市某校区的具体工程问题分析了动载下该工程基坑支护结构的响应,提出的复合人工边界方法在波动问题的时域分析中具有一定的普适性。采用的方法与所得结论对相关工程应用具有理论价值。
郝宇[3](2021)在《深基坑开挖对环境及毗邻隧道安全影响及控制措施的研究》文中进行了进一步梳理伴随城市化发展,旧城更新改造带来的问题越来越多,特别是在老城区中进行深基坑项目施工时其安全隐患尤为突出。本文针对老城区更新改造过程中深基坑开挖对周边环境及毗邻隧道的安全影响特点及其防控技术进行研究,对深基坑支护方案进行了优化设计,并对周边环境安全提出防控措施。主要研究内容如下:(1)针对深基坑与周边环境特点,根据工程地质勘探资料设计了地下连续墙、桩锚与地下连续墙联合支护及土钉支护三种不同结构形式的支护方案,并对其分别进行了数值模拟分析;通过对比分析其应力场与位移场的演化特点及影响属性,判别基坑、周边环境及毗邻隧道的安全性;再通过对支护方案的造价分析确定最终的优化设计方案。(2)深基坑开挖导致地层水平方向约束应力失衡诱发围岩产生移动变形。通过系统模拟研究深基坑开挖对毗邻隧道的影响特点及其围岩的应力与位移变化特点,揭示不同开挖深度对隧道结构安全的影响机理,建立了影响区划图;研究了隧道围岩受深基坑开挖和隧道平衡拱效应的叠加影响特点,分析了隧道围岩产生拉伸或挤压作用及其围岩的变形规律,确定了隧道左侧壁发生拉伸破坏、右侧壁发生挤压破坏区域,为其安全加固提供了依据。(3)针对隧道局部变形超限与结构不安全问题设计了三种隧道加固方案并且分别进行数值模拟分析,并对加固方案下隧道的应力场与位移场的演化特点及影响属性进行了研究,判别隧道的安全性;再通过各方案加固效果的对比分析,确定了其最终优化设计方案。
邹正[4](2021)在《复杂环境下综合管廊深基坑支护优选及监测》文中研究表明城市综合管廊凭借其能高效和模块化使用地下空间的优越性,在我国大中型城市中得到了大力推广和建设。其基坑开挖施工通常会在地下管线错综复杂、毗邻构筑物及道路等复杂环境下进行,这对基坑支护结构的选择和使用提出了较高要求。本文在综述综合管廊基坑相关研究现状的基础上,概述了基坑支护主要类型及基坑变形形式;以成都市科学城北路综合管廊K0+260~K0+580标段深基坑工程为研究背景,采用模糊层次分析法(FAHP)建立了支护结构评价体系,在备选方案中决策出了最优方案;使用Midas GTS NX软件对最优方案下的基坑施工建立了有限元模型并进行了模拟计算,对基坑支护位移及地表变形进行了讨论;在施工全过程中对综合管廊毗邻构筑物开展了沉降监测及分析工作。通过上述研究分析可以说明:采用模糊层次分析法能够较好地对复杂环境下综合管廊深基坑支护结构进行量化评比和决策,数值模拟能对最优支护方案下施工的风险节点进行预估并验证了优选方案的可行性,监测证明最优方案下进行基坑开挖对毗邻桩基础高层建筑的影响安全可控。论文提供了一种在复杂环境下进行综合管廊深基坑支护选型的决策方式,并进行了科学验证;研究的相关方法和结论可为类似的综合管廊基坑工程建设起到一定的参考和借鉴作用。
邢宏侠[5](2021)在《深基坑“岩土结构化”永久支护体系研究与实践》文中研究说明现阶段岩土工程专业承担基坑支护设计,主体建筑结构由结构工程专业完成。基坑支护是主体地下结构安全施工的条件,主体地下结构是基坑支护存在的前提。同一项目的基坑支护与主体地下结构均为主体建设目标的组成部分,属同一地下结构系统。基坑工程的临时性与地下工程岩土、结构专业的分离,导致基坑支护极大浪费,不符合现阶段高质量发展的根本要求。论文定位支护构件为地下主体结构的一部分,明确了支护构件和地下室外墙的功能定位,构造了以单排和双排支护桩为核心构件的永久支护结构,依托案例进行计算分析,明确各阶段主要设计计算内容,取得如下进展:1.提出了深基坑支护永久化理念,定义“岩土结构化”设计方法,明确永久支护体系包含的开挖、构建和使用三阶段形成过程及其各阶段承担的主要荷载,阐明了永久支护体系的设计原则;2.根据竖向支护构件永久使用和地下室外墙仅承担肥槽回填土压力的设计定位,利用水平楼板构造外伸支撑,形成了水平楼板与永久支护桩结合的永久支护体系,明确永久构件与临时构件对应的荷载组合原则及其荷载分项系数,阐明了永久支护结构开挖、构建、和正常使用工况下的计算方法和结构分析内容,确定了主要构件的内力以及变形规律,得到的永久构件裂缝宽度验算结果满足耐久性要求;3.利用复合地基和被动区群桩的侧向刚度,构造了双排桩与复合地基相结合的永久支护结构,阐释了复合地基与基坑支护结合的“岩土结构化”设计方法。得到了双排支护桩兼作复合地基桩各阶段的内力以及变形规律,提出了通过差异性的褥垫层厚度调整地基不均匀沉降的处理方法。通过群桩遮拦效应的研究,揭示主动区复合地基和被动区群桩对于支护结构主、被动土压力以及内力、变形的影响规律,进一步阐明了复合地基与基坑支护的集约化设计方法。
兰文臣[6](2021)在《基于价值工程的临近既有隧道深基坑支护方案优选研究》文中指出随着城市用地愈发紧张及地下轨道交通的飞速发展,许多新建建筑物的基坑不可避免地需要在既有隧道旁进行施工,随之产生了很多临近既有隧道的深基坑工程。目前,在此类深基坑工程的支护方案设计中,设计人员往往只专注安全性,盲目地选择相对保守的支护方案,造成很多不必要的投资浪费,且设计人员也很少对不同的支护方案进行科学系统的多维度优选。因此,本文就临近既有隧道深基坑支护方案的优选流程展开研究。首先,本文总结了临近既有隧道深基坑支护方案的相关特点及规范要求,结合国内外学者利用价值工程进行方案优选的相关研究,决定基于价值工程进行临近既有隧道深基坑的支护方案优选。其次,通过文献分析法建立了临近既有隧道深基坑支护方案优选的功能指标体系。在进行大量文献阅读后统计及整理了普通深基坑支护方案优选中的各功能指标出现的频次,确定普通深基坑支护方案优选的功能指标体系。再以普通深基坑支护方案优选的功能指标体系为基础,结合临近既有隧道深基坑支护方案相较于普通深基坑支护方案的特有性质及相关强制性规范,确定临近既有隧道深基坑支护方案优选的功能指标体系。再者,本文以A临近既有隧道深基坑支护工程为例,阐述说明了基于价值工程进行临近既有隧道深基坑支护方案优选的流程及方法。其主要步骤如下:采用层次分析法对临近既有隧道深基坑支护方案优选的功能指标进行分析,确定各功能指标的权重;通过专家打分来确定各备选方案满足某功能要求的程度,再结合各项功能指标的权重,确定各备选方案的功能评分值,进而计算功能系数;根据各备选方案工程造价,确定各备选方案的成本系数;根据价值工程理论,计算各备选方案的价值系数并进行价值分析,选择价值系数最大的方案为最优方案。最后,对最优方案的实施效果进行总结分析。实践证明,最优方案在安全、环保、施工便捷性、成本等方面均具显着的优势,应积极推广价值工程在临近既有隧道深基坑支护方案优选中的应用。本文图10幅,表30个,参考文献60篇。
李晓怡[7](2021)在《昆明某软土深基坑支护方案优选与研究》文中认为近年来,我国城市化迅速发展,因国土资源有限,城市地下空间的开发和利用显得尤为重要。城市基坑工程常被比较密集的既有建筑或基础设施所包围,基坑施工因为受环境条件的制约变得十分困难,且基坑工程一旦出现事故,必然会导致经济损失,严重时还可能造成人员伤亡,因此,在深基坑工程进行方案设计和施工过程中,应根据工程的实际条件,选择安全、经济、合理的最优设计方案,然后按图施工、精确监测,保证基坑施工安全顺利的进行。昆明盆地滇池泥炭土的成因复杂,岩土工程性质较差,该地区的基坑工程在设计和施工过程中,时常面临各种困难。因此,对昆明盆地软土深基坑支护方案的优选与研究,对于指导该地区深基坑工程设计与施工的重要性可见一斑。本文以昆明某软土深基坑工程为研究对象,浅析研究区泥炭土的工程地质特性,并运用价值工程的方法进行基坑支护方案优选,然后使用FLAC3D软件对基坑各开挖工况进行数值模拟,最后依据支护方案进行开挖和监测,并将模拟结果与监测结果进行对比,主要内容如下:(1)简单总结基坑支护方案优选的国内外研究现状;诠释桩锚支护结构及水泥土搅拌桩的作用机理。(2)浅析研究区泥炭土的形成年代及分布空间,对研究区泥炭土进行研究试验,分析其物理力学特性,并对泥炭土地基的岩土工程特性做出评价,在此基础上制定基坑支护备选方案,然后运用价值工程原理进行基坑支护方案优选。(3)运用FLAC3D有限差分软件模拟基坑的开挖过程,得到基坑土体水平、竖向位移的模拟值并对模拟结果进行分析,验证基坑支护方案的合理性及可行性。(4)在施工过程中,搜集基坑周边土体的沉降位移、支护桩的桩顶位移、深层水平位移等实际监测值,将模拟结果与监测结果进行对比分析,进一步说明该深基坑支护方案优选的合理性及数值模拟的正确性,希望为今后昆明地区软土深基坑的设计及施工提供参考。
尹幸乐[8](2021)在《软土地层深基坑开挖变形监测与数值模拟分析》文中提出随着地下工程规模的不断增大,范围的不断增广,随之也带来了一系列的难题,其中软土地层便是目前所面临的难题之一,基础的稳定性很大程度上影响着整个工程的稳定,软土等不良地层在进行深基坑工程施工时,如果不提前对这些不良地层进行预加固,势必会对深基坑施工产生或大或小的影响;此外地铁施工常常位于城市中心建筑物分布比较密集的地方,城市地下建筑以及各种地下管线密密麻麻,更加大了深基坑施工的难度,一旦在基坑施工的过程中围护结构发生较大位移将会产生巨大的安全隐患,如地表发生不均匀沉降、地下管线变形破裂、周边建筑物开裂坍塌等;因此对软土地层进行预加固,并分析和实时对深基坑开挖过程的位移变形规律进行监测是非常有必要的。本文以深圳地铁16号线龙城中路站为工程依托,结合深圳市龙岗区的地质情况,对龙城中路站的软土地层进行预加固,并采用FLAC3D软件进行数值模拟和现场监测相结合的方法分析预加固后基坑开挖其支护结构以及其周边环境的变形规律和位移情况,得到的研究结果如下:1.在部分钻孔中揭露有泥炭质土和含泥炭质粉质黏土,分布不均匀,局部夹木头碎屑,且周边建筑物密集距离近,综合考虑施工难度、工程造价等方面的原因,采用水泥搅拌桩加固法。用三轴搅拌桩对该基坑软土地层进行加固处理,并在大规模施工前进行试桩,对比选出最佳参数,经实验验证地基加固及地连墙槽壁加固施工无侧限抗压强度大于等于0.8MPa(28d龄期),三轴搅拌桩加固后的复合土体的内摩擦角≥20°,粘聚力≥200k Pa,加固后的复合土体强度指标均已达到施工所需要求。2.为了对加固方案的合理性和最终的加固结果进行有效性进行验证,本文采用FLAC3D软件对基坑支护结构和基坑周边环境的变形特征和位移情况进行了模拟分析,深入探讨了地连墙墙顶的水平位移与竖向位移、深基坑周围地表的竖向位移、地表建筑物的沉降量及深层土体的水平位移等,得到深基坑开挖支护结构与周边环境变形特征规律,结果表明其变形规律符合基坑开挖的变形规律特征,且与文中的理论分析结果一致,位移值均在设计规定的预警值之内,从而验证了土层加固方案的合理性和土层加固的有效性。3.为了验证FLAC3D对于模拟分析地铁车站深基坑工程开挖过程的可行性和可靠性,制定了合理的位移监测方案,通过对现场进行实时监测获得监测数据,并对其监测数据进行详细的分析,将模拟结果与现场实际监测结果进行对比分析得到二者的变形规律基本一致且位移结果相差不大,由此说明了FLAC3D对于模拟分析地铁车站深基坑工程开挖过程有足够的可行性和可靠性。
束永峰[9](2021)在《受限空间兼具环形导流的基坑支护体系稳定性研究》文中研究说明随着我国现代化进程的加快,城镇建设日新月异,地下空间的大规模开发利用已经成为不可逆转的时代潮流,建设过程中涌现出许多基坑工程的问题。基坑工程所涉及的范围十分广泛,基坑工程的研究意义重大,本文研究的基坑处于受限空间,狭小地带对于基坑支护结构选型以及施工技术要求十分苛刻;基坑截面形式为环形,其受力更加复杂;本基坑为雨水、污水箱涵改造深基坑工程,对于排水要求也十分苛刻。综合考虑NFHJL23号截流井深基坑支护工程的各项不利因素,采用受限空间兼具环形导流的基坑支护体系。本论文采用理论研究和数值模拟相结合的方法。使用MIDAS/GTS NX有限元软件建立工程实例模型以及对模型进行优化分析得出如下结论:(1)在高压旋喷桩体内不插入型钢不能起到确保基坑稳定的作用。(2)内外圈型钢分别密插以及插一跳一和工程实例对比分析,内外圈型钢全部密插的对确保支护体系及基坑稳定性的效果最好;工程实例其次,内外圈型钢全部插一跳一的效果相对工程实例的要差一点,但是都可以保证支护体系及基坑工程的稳定性;如果合理考虑基坑开挖深度以及工程造价,选择内外圈型钢全部插一跳一方式的支护体系既可以节约工程造价,又可以确保支护体系及基坑工程的稳定性。(3)改变型钢截面形式的有限元模型与工程实例的有限元模型对比发现,合理改变型钢截面对于支护体系及基坑稳定性有一定影响,但是影响不是很大;文中介绍的两种型钢截面形式优化模型都可以确保支护体系及基坑的稳定性,节约工程造价。图[84]表[3]参[49]
刘成[10](2021)在《考虑支护结构对基坑及邻近建筑变形影响分析》文中进行了进一步梳理随着当今社会经济的持续发展,不管是地下空间工程的逐步扩大,还是地上高楼的日益拔起,都离不开基坑工程的开挖与建设。当前,日益完善的基坑支护体系的建立,使基坑工程的安全和成本控制得到很好的提高,但另一方面,由于影响基坑工程的因素很多,支护体系又复杂多样,没有针对性的专门研究基坑支护结构参数对基坑及邻近建筑物的变形影响。通过大量文献阅读当前建筑基坑支护结构这一方面的研究现状,发现基坑采用的支护结构对整个基坑和周围环境的变形影响较大,且支护结构参数是影响变形的主要因素,因此,为控制基坑及邻近环境的变形,对基坑支护参数的应用研究是十分必要的。本文通过介绍大量前人总结的相关基坑及邻近建筑位移变形理论和计算方法,对基坑支护引起的变形提供参考。同时以合肥某酒店基坑为例,支护体系采用本工程原有的地连墙加内支撑结构,主要运用有限元模拟方法和实际监测,通过改变地连墙厚度和水平内支撑材料这两项因素,研究其对基坑自身围护结构、地表沉降、坑底隆起、邻近建筑变形等方面影响,并结合数据处理软件,进行对比分析。模拟结果与实际监测数据变化趋势基本吻合,误差范围合理,同时也得到了一系列相关影响基坑工程和邻近建筑变形的规律和结论。另外,针对本工程的邻近建筑水平和竖向位移特点,在考虑不更换支护体系的情况下,运用影响区土体参数置换法对邻近建筑物进行数值模拟,模拟表明土体参数对建筑桩基的变形是有一定作用的,相关研究发现如下:(1)地连墙厚度与其自身的水平位移、坑底隆起和地表沉降呈反比,与其自身竖向位移不成比例关系,且影响程度微小;与邻近建筑水平和竖向位移呈正比,且对水平位移影响略大。(2)混凝土支撑与钢支撑对基坑和邻近建筑的变形影响不同。混凝土支撑在控制变形上明显优于钢支撑,主要体现在对围护结构水平位移、地表沉降、邻近建筑水平和竖向位移方面,且对水平位移影响略大;两者对围护结构竖向位移和坑底隆起的影响基本相同。(3)本基坑支护结构下,结合影响区土层和邻近建筑水平和竖向位移变形特点,利用数值软件对影响区土层进行参数置换处理,置换后的模拟结果比较明显,随着土层弹性模量的增加,土体及建筑桩基水平位移明显减小,说明弹性模量大的土层能有效减小土体和建筑桩基水平位移,且土体弹性模量在1.1倍和1.3倍时,其控制变形效果显着,在弹性模量为1.5倍时,其控制变形效果减弱。综上所述,影响区土层弹性模量是影响基坑及建筑物变形的因素之一,增加影响区土层刚度有利于基坑及邻近建筑的安全稳定,更为相似工程实例提供一定的借鉴和参考。图[63]表[8]参[46]
二、基坑支护综合处理技术(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、基坑支护综合处理技术(论文提纲范文)
(1)桩锚支护作用下深基坑变形监测分析(论文提纲范文)
摘要 |
abstract |
1 绪论 |
1.1 选题背景及研究意义 |
1.1.1 选题背景 |
1.1.2 研究意义 |
1.2 国内外研究现状 |
1.2.1 桩锚结构支护作用下深基坑变形研究现状 |
1.2.2 深基坑地表沉降研究现状 |
1.2.3 深基坑桩锚支护结构研究现状 |
1.3 研究内容、方法及技术路线 |
1.3.1 研究内容 |
1.3.2 研究方法与技术路线 |
2 某深基坑基本特征及桩锚支护结构设计 |
2.1 研究区工程概况 |
2.1.1 概述 |
2.1.2 周边环境 |
2.2 工程地质条件 |
2.2.1 地形地貌 |
2.2.2 地质构造 |
2.2.3 地层岩性 |
2.2.4 水文地质条件 |
2.2.5 不良地质作用 |
2.3 深基坑工程桩锚支护结构设计 |
2.3.1 深基坑支护工程设计的特点 |
2.3.2 研究区深基坑工程支护设计难点分析 |
2.3.3 研究区深基坑工程支护方案比选分析 |
2.3.4 桩锚支护结构模型建立 |
2.3.5 支护参数选定 |
2.3.6 冠梁参数选定 |
2.3.7 锚索排桩参数选定 |
2.3.8 锚拉排桩支护结构计算 |
2.3.9 深基坑桩锚支护结构稳定性验算 |
2.4 本章小结 |
3 桩锚支护作用下深基坑变形监测分析 |
3.1 深基坑变形监测方案 |
3.1.1 深基坑监测方案编制的原则及依据 |
3.1.2 基坑监测目的与内容 |
3.1.3 基坑监测点布置及监测频率 |
3.2 深基坑变形监测数据分析 |
3.2.1 深基坑桩体深层位移监测分析 |
3.2.2 深基坑桩锚支护结构桩顶水平位移变形监测分析 |
3.2.3 深基坑坑边地表土体沉降变形监测分析 |
3.3 本章小结 |
4 桩锚支护作用下深基坑变形有限元数值模拟分析及优化设计 |
4.1 FLAC~(3D)有限差分分析软件简介 |
4.1.1 软件简介 |
4.1.2 软件特点 |
4.1.3 网格生成 |
4.1.4 模型建立条件 |
4.1.5 计算步骤 |
4.2 计算模型建立 |
4.2.1 模型基本假定 |
4.2.2 模型工况选取 |
4.2.3 数值模型建立 |
4.3 基于单因素试验的深基坑变形沉降数值模拟分析及优化设计 |
4.3.1 桩锚支护单因素试验方案设计 |
4.3.2 模型基本参数 |
4.3.3 水平位移结果分析 |
4.3.4 竖向位移结果分析 |
4.3.5 优化设计方案数值模拟结果分析 |
4.4 深基坑变形沉降联合分析 |
4.4.1 深基坑支护桩顶水平位移分析 |
4.4.2 深基坑桩体深层位移分析 |
4.4.3 深基坑地表沉降分析 |
4.5 本章小结 |
5 结论与展望 |
5.1 结论 |
5.2 展望 |
致谢 |
参考文献 |
附录 |
(2)列车振动荷载作用下基坑支护结构动力响应的研究(论文提纲范文)
摘要 |
Abstract |
第一章 绪论 |
1.1 选题背景与意义 |
1.2 国内外技术现状 |
1.2.1 深基坑支护研究 |
1.2.2 数值模拟技术研究 |
1.2.3 列车振动对周围环境影响研究 |
1.3 .主要研究内容 |
1.4 技术路线和研究方案 |
第二章 深圳市某基坑项目工程概况 |
2.1 工程概况 |
2.2 .地形地貌条件 |
2.3 水文地质条件 |
第三章 COMSOL动载时域分析中的人工边界 |
3.1 常用的人工边界条件 |
3.2 人工功能梯度粘弹性边界层 |
3.2.1 Kelvin-Voigt模型 |
3.2.2 功能梯度粘弹性边界层的实现 |
3.3 二维数值算例验证 |
3.3.1 波动问题时域分析中的完美匹配层 |
3.3.2 不同人工边界对波动时域分析影响 |
3.4 三维数值算例验证 |
3.5 本章小结 |
第四章 基于 COMSOL 软件列车振动荷载下基坑支护结构有限元模型建立 |
4.1 本构模型的选取 |
4.1.1 Drucker-Prager本构 |
4.1.2 材料参数确定 |
4.2 计算方法及其原理 |
4.3 列车振动荷载的确定 |
4.3.1 列车振动加速度的数定形式 |
4.3.2 列车竖向激振荷载的模拟 |
4.4 人工边界的施加 |
第五章 列车荷载作用下基坑支护结构动力响应分析 |
5.1 地铁振动随机激励得施加 |
5.2 不同开挖深度下基坑支护结构的动力反应分析 |
5.2.1 基坑支护结构的加速度反应分析 |
5.2.2 基坑支护结构位移反应分析 |
5.2.3 基坑支护结构压应力响应分析 |
5.2.4 列车振动荷载下基坑支护结构的Mises等效应力分析 |
5.3 列车振动作用下基坑支护结构总体监测结果 |
第六章 结论与展望 |
6.1 结论 |
6.2 展望 |
致谢 |
参考文献 |
(3)深基坑开挖对环境及毗邻隧道安全影响及控制措施的研究(论文提纲范文)
摘要 |
ABSTRACT |
第一章 绪论 |
1.1 选题背景与研究意义 |
1.1.1 选题背景 |
1.1.2 基坑工程的特点 |
1.2 国内外研究现状 |
1.2.1 基坑支护技术研究现状 |
1.2.2 数值模拟技术研究现状 |
1.2.3 基坑工程周边环境保护研究现状 |
1.2.4 桩锚支护技术研究现状 |
1.2.5 基坑工程未来发展趋势 |
1.3 研究内容和技术路线 |
1.3.1 本文主要研究内容 |
1.3.2 本文技术路线 |
第二章 深基坑支护方案优化设计的研究 |
2.1 工程概况 |
2.1.1 基坑周边环境安全分析 |
2.1.2 场地地层条件 |
2.2 地下连续墙支护方案设计及其数值模拟分析 |
2.2.1 方案设计 |
2.2.2 数值模拟模型建立 |
2.2.3 地下连续墙支护方案的模拟分析 |
2.3 综合支护方案设计及其数值模拟分析 |
2.3.1 方案设计 |
2.3.2 综合支护方案的数值模拟分析 |
2.4 预应力锚杆复合土钉支护的方案设计及其数值模拟分析 |
2.4.1 方案设计 |
2.4.2 预应力锚杆复合土钉支护方案的模拟分析 |
2.5 地下连续墙方案与综合支护方案的对比分析 |
2.5.1 支护效果对比分析 |
2.5.2 成本造价分析 |
2.6 工程监测数据对比分析 |
2.7 本章小结 |
第三章 深基坑开挖对毗邻隧道变形影响的研究 |
3.1 深基坑开挖诱发毗邻隧道变形的数值模拟研究 |
3.1.1 数值模拟模型的建立 |
3.1.2 数值模拟测线的布设 |
3.2 深基坑开挖时土体及隧道应力变化特点的研究 |
3.2.1 深基坑开挖数值模拟分析 |
3.2.2 隧道各测点应力随基坑开挖变化的特点分析 |
3.3 深基坑开挖时土体及隧道位移变化特点的研究 |
3.3.1 深基坑开挖数值模拟分析 |
3.3.2 隧道各测点位移随基坑开挖变化的特点分析 |
3.3.3 深基坑开挖诱发隧道变形的机理分析 |
3.4 本章小结 |
第四章 隧道变形的控制及加固方案优化设计 |
4.1 隧道加固方式研究现状 |
4.1.1 隧道加固研究 |
4.1.2 隧道常用加固措施 |
4.2 隧道加固方案设计 |
4.2.1 锚索加固方案设计 |
4.2.2 围岩体注浆加固方案设计 |
4.2.3 衬砌钢带加固方案设计 |
4.3 加固方案的数值模拟分析 |
4.3.1 锚索加固方案的数值模拟分析 |
4.3.2 注浆加固方案的数值模拟分析 |
4.3.3 钢带加固方案的数值模拟分析 |
4.3.4 加固效果对比分析 |
4.4 本章小结 |
第五章 结论与展望 |
5.1 结论 |
5.2 展望 |
参考文献 |
在学期间的研究成果 |
致谢 |
(4)复杂环境下综合管廊深基坑支护优选及监测(论文提纲范文)
摘要 |
abstract |
1 绪论 |
1.1 研究背景及意义 |
1.2 国内外研究现状 |
1.3 研究内容及研究方法 |
2 基坑支护主要类型及基坑与地面变形 |
2.1 基坑支护主要类型 |
2.2 基坑与地面变形形式 |
2.3 本章小结 |
3 复杂环境下综合管廊深基坑支护优选 |
3.1 工程概况 |
3.2 综合管廊深基坑支护优选方法 |
3.3 FAHP评价体系的建立 |
3.4 基于FAHP的综合管廊深基坑支护选型 |
3.5 本章小结 |
4 复杂环境下综合管廊深基坑支护数值模拟研究 |
4.1 Midas GTS NX软件简介 |
4.2 综合管廊深基坑计算模型的建立 |
4.3 数值模拟计算结果分析 |
4.4 本章小结 |
5 综合管廊深基坑临近建筑物监测研究 |
5.1 监测目的及原理 |
5.2 监测方案 |
5.3 监测数据分析 |
5.4 模拟结果与监测数据对比分析 |
5.5 本章小结 |
6 结论与展望 |
6.1 结论 |
6.2 展望 |
参考文献 |
致谢 |
在校期间的科研成果 |
(5)深基坑“岩土结构化”永久支护体系研究与实践(论文提纲范文)
摘要 |
ABSTRACT |
第1章 绪论 |
1.1 研究背景及意义 |
1.2 国内外研究进展 |
1.2.1 深基坑支护结构发展与现状 |
1.2.2 深基坑支护计算理论 |
1.2.3 深基坑支护理念现状 |
1.2.4 深基坑岩土结构化永久支护 |
1.3 主要研究内容与研究方法 |
1.4 创新点与论文结构 |
第2章 深基坑“岩土结构化”永久支护体系设计 |
2.1 深基坑支护永久化理念及其设计方法 |
2.1.1 深基坑支护永久化理念 |
2.1.2 “岩土结构化”设计方法 |
2.2 永久支护结构体系 |
2.2.1 永久支护结构体系示意 |
2.2.2 永久支护结构体系构造 |
2.3 永久支护结构体系计算分析 |
2.3.1 深基坑分类 |
2.3.2 设计原则 |
2.3.3 计算分析方法 |
2.4 本章小结 |
第3章 基于支护桩与楼板支撑的深基坑永久支护结构实践 |
3.1 有限元法计算分析 |
3.1.1 工程概况 |
3.1.2 “岩土结构化”设计 |
3.1.3 三维有限元分析模型 |
3.1.4 永久支护结构内力及变形规律 |
3.1.5 耐久性与永久化分析 |
3.2 弹性支点法案例计算分析 |
3.2.1 工程概况 |
3.2.2 计算工况 |
3.2.3 结构计算及耐久性分析 |
3.3 本章小结 |
第4章 双排桩与复合地基结合的永久支护结构实践 |
4.1 双排桩永久支护体系设计 |
4.1.1 工程概况 |
4.1.2 永久支护结构“岩土结构化”设计 |
4.2 结构计算分析 |
4.2.1 三维有限元模型 |
4.2.2 永久支护结构内力及变形规律 |
4.2.3 永久化关键问题分析 |
4.3 基坑支护与复合地基集约化认识 |
4.3.1 有限元对照模型设置 |
4.3.2 群桩遮拦作用 |
4.3.3 主动区和被动区土压力规律 |
4.3.4 群桩遮拦作用对双排桩内力及变形影响 |
4.4 本章小结 |
第5章 结论与展望 |
5.1 结论 |
5.2 建议及展望 |
参考文献 |
致谢 |
攻读硕士期间发表论文及专利 |
学位论文评阅及答辩情况表 |
(6)基于价值工程的临近既有隧道深基坑支护方案优选研究(论文提纲范文)
致谢 |
摘要 |
ABSTRACT |
1 绪论 |
1.1 研究背景 |
1.2 研究意义 |
1.3 国内外研究现状 |
1.3.1 国内研究现状 |
1.3.2 国外研究现状 |
1.4 研究内容、方法和技术路线 |
1.4.1 研究内容 |
1.4.2 研究方法 |
1.4.3 技术路线 |
2 相关理论基础及方案优选方法的选择 |
2.1 常见的基坑支护方式 |
2.2 临近既有隧道深基坑支护方案的要求 |
2.2.1 一般深基坑支护方案的要求 |
2.2.2 临近既有隧道深基坑施工特点 |
2.2.3 临近既有隧道深基坑支护方案优选要求 |
2.3 临近既有隧道深基坑支护方案优选方法的选择 |
2.3.1 常见的方案优选方法 |
2.3.2 临近既有隧道深基坑支护方案优选方法选择 |
2.4 基于AHP的价值工程法 |
2.4.1 层次分析法的基本原理 |
2.4.2 价值工程的基本原理 |
2.4.3 基于AHP的价值工程法的思路及工作流程 |
3 临近既有隧道深基坑支护方案的功能指标体系构建 |
3.1 功能指标体系构建的原则和方法 |
3.1.1 功能指标体系构建的原则 |
3.1.2 功能指标体系构建的一般方法 |
3.1.3 功能指标体系的构建思路 |
3.2 临近既有隧道深基坑支护方案的功能指标体系 |
3.2.1 一般深基坑支护方案的功能指标 |
3.2.2 临近既有隧道深基坑支护方案的功能指标 |
4 A临近既有隧道深基坑支护方案优选 |
4.1 工程概况 |
4.1.1 工程基本情况 |
4.1.2 工程地质情况 |
4.1.3 既有隧道的变形要求 |
4.2 备选支护方案 |
4.2.1 备选方案一 |
4.2.2 备选方案二 |
4.2.3 备选方案三 |
4.3 支护方案功能指标权重的确定 |
4.3.1 功能指标体系的层次结构模型 |
4.3.2 功能指标权重确定 |
4.4 各备选方案的功能评价 |
4.4.1 各备选方案的功能评价过程 |
4.4.2 各备选方案的功能系数计算 |
4.5 各备选方案的成本评价 |
4.5.1 各备选方案的成本过程 |
4.5.2 各备选方案的成本系数计算 |
4.6 各备选方案的价值评价及优选 |
4.7 优选方案的实施效果分析 |
5 结论与展望 |
5.1 结论 |
5.2 不足和展望 |
参考文献 |
附录A 功能指标重要度对比评价调查表 |
附录B 功能指标重要度专家评分结果汇总记录表 |
作者简历及攻读硕士学位期间取得的研究成果 |
学位论文数据集 |
(7)昆明某软土深基坑支护方案优选与研究(论文提纲范文)
摘要 |
Abstract |
第一章 绪论 |
1.1 选题的背景与意义 |
1.2 基坑支护方案优选的研究现状 |
1.2.1 定性分析的方法 |
1.2.2 定性分析与定量分析结合的方法 |
1.2.3 基坑支护方案优选研究现状的分析 |
1.3 本文采用的基坑支护方案优选方法 |
1.4 桩锚支护体系的国内外研究现状 |
1.5 本文的主要内容及研究路线 |
1.5.1 主要内容 |
1.5.2 主要技术路线 |
第二章 桩锚支护体系及水泥土加固的基本理论 |
2.1 桩锚支护体系的基本理论 |
2.1.1 桩锚支护体系的构成 |
2.1.2 桩锚支护体系的作用机理 |
2.1.3 桩锚支护结构的破坏形式 |
2.2 桩锚支护体系的计算 |
2.2.1 桩锚支护结构内力的计算方法 |
2.2.2 整体稳定性验算 |
2.2.3 抗倾覆稳定性验算 |
2.2.4 抗隆起稳定性验算 |
2.2.5 抗流土稳定性验算 |
2.3 水泥土加固的基本理论 |
2.3.1 水泥土搅拌桩的作用原理 |
2.3.2 水泥土的结构特性及其与混凝土的差异 |
2.3.3 有机质对水泥土加固的影响 |
2.3.4 红黏土的掺入对水泥加固泥炭土的改善作用 |
2.4 本章小结 |
第三章 研究区泥炭土的特性及其工程地质条件 |
3.1 泥炭土的概述 |
3.2 滇池泥炭土的形成过程及空间分布 |
3.2.1 滇池泥炭土的形成过程 |
3.2.2 滇池泥炭土的分布 |
3.3 工程实例 |
3.3.1 工程概况及周边环境 |
3.3.2 场地及其周边地形地貌 |
3.3.3 地层岩性构成 |
3.3.4 水文地质条件 |
3.4 工程场地泥炭土的特点及其工程地质条件 |
3.4.1 研究区泥炭土层的分布 |
3.4.2 研究区泥炭土的物质成分 |
3.4.3 研究区泥炭土的物理力学特性 |
3.5 泥炭土地基存在的工程地质问题及施工注意事项 |
3.5.1 研究区泥炭土存在的工程地质问题 |
3.5.2 基坑施工过程中的注意事项 |
3.6 本章小结 |
第四章 基坑支护方案优选 |
4.1 价值工程的起源及发展 |
4.2 价值工程的原理 |
4.3 价值工程活动的基本流程 |
4.3.1 确定目标 |
4.3.2 功能分析 |
4.4 价值工程活动用于基坑支护方案优选 |
4.4.1 基坑支护价值工程活动的特点 |
4.4.2 搜集基坑背景资料并确定备选方案 |
4.4.3 基坑支护工程的功能分析 |
4.4.4 基坑支护方案的选取 |
4.5 本章小结 |
第五章 基坑支护方案的数值模拟 |
5.1 数值分析模型的建立 |
5.1.1 本构关系及参数选取 |
5.1.2 支护结构及参数选取 |
5.1.3 模型尺寸及网格划分 |
5.1.4 模型边界条件 |
5.1.5 初始应力状态 |
5.2 基坑开挖的数值模拟及分析 |
5.2.1 模拟工况的设置 |
5.2.2 各工况下基坑变形模拟分析 |
5.3 本章小结 |
第六章 基坑监测与对比分析 |
6.1 基坑监测方案 |
6.1.1 监测项目及内容 |
6.1.2 监测点布置 |
6.1.3 监测仪器及报警值 |
6.2 模拟结果与监测结果对比分析 |
6.2.1 典型剖面处地表沉降对比分析 |
6.2.2 桩顶水平位移对比分析 |
6.2.3 桩顶沉降对比分析 |
6.2.4 支护桩深层水平位移的对比分析 |
6.3 本章小结 |
第七章 结论 |
第八章 不足与展望 |
致谢 |
参考文献 |
附录 (攻读硕士学位期间发表的论文) |
(8)软土地层深基坑开挖变形监测与数值模拟分析(论文提纲范文)
摘要 |
ABSTRACT |
1 绪论 |
1.1 选题背景及研究意义 |
1.2 国内外研究现状 |
1.3 研究内容及技术路线 |
1.3.1 研究内容 |
1.3.2 技术路线 |
2 工程概况及地层预加固方案设计 |
2.1 工程概况 |
2.1.1 车站位置及交通疏解 |
2.1.2 车站工程概况 |
2.1.3 岩土分层及其岩性特征 |
2.1.4 深基坑支护结构设计 |
2.2 软土地层特点及加固方法 |
2.2.1 软土地层的特点 |
2.2.2 软土地层加固方法 |
2.3 软土地层加固措施分析 |
2.3.1 试桩 |
2.3.2 工艺流程 |
2.3.3 施工方法 |
2.3.4 施工技术要求 |
2.4 本章小结 |
3 软土地层深基坑变形机理及影响因素分析 |
3.1 深基坑的工程特点 |
3.2 软土深基坑的工程特点 |
3.3 软土地层深基坑变形类型分析 |
3.3.1 围护结构的变形 |
3.3.2 周边地表沉降变形 |
3.3.3 坑底隆起变形 |
3.4 软土地层深基坑变形特征及影响因素分析 |
3.4.1 深基坑开挖卸载的变形特征 |
3.4.2 地质条件影响 |
3.4.3 设计因素影响 |
3.4.4 施工因素影响 |
3.5 本章小结 |
4 软土地层深基坑支护结构特性数值模拟与分析 |
4.1 数值模拟软件简介 |
4.2 数值模型建立 |
4.2.1 物理模型及边界条件的选取 |
4.2.2 计算工况 |
4.2.3 计算参数 |
4.3 数值模拟结果分析 |
4.3.1 初始地应力平衡和最大不平衡力 |
4.3.2 支护结构变形特征规律 |
4.3.3 深基坑周围土体变形规律 |
4.4 本章小结 |
5 深基坑开挖变形监测及对比分析 |
5.1 监测目的及内容 |
5.1.1 监测目的及其重要性 |
5.1.2 监测等级划分 |
5.1.3 监测内容 |
5.2 监测方案设计 |
5.2.1 监测点布置平面图 |
5.2.2 监测周期与频率 |
5.2.3 监测控制值与警戒值 |
5.3 现场监测结果与分析 |
5.3.1 墙顶水平位移分析 |
5.3.2 墙顶竖向位移分析 |
5.3.3 建筑物沉降分析 |
5.3.4 地表沉降分析 |
5.3.5 土体深层水平位移 |
5.4 深基坑支护结构数值模拟与监测对比分析 |
5.4.1 地连墙水平位移对比分析 |
5.4.2 地连墙竖向位移对比分析 |
5.4.3 深基坑周围地表竖向位移对比分析 |
5.4.4 土体深层位移对比分析 |
5.5 本章小结 |
6 结论与展望 |
6.1 结论 |
6.2 展望 |
致谢 |
参考文献 |
攻读学位期间的研究成果 |
(9)受限空间兼具环形导流的基坑支护体系稳定性研究(论文提纲范文)
摘要 |
Abstract |
第一章 绪论 |
1.1 前言 |
1.2 研究背景 |
1.3 研究的主要意义 |
1.4 相关领域研究现状和成果 |
1.4.1 基坑主要支护结构 |
1.4.2 高压旋喷桩内插型钢支护结构 |
1.4.3 支护结构及基坑工程研究现状 |
1.5 研究的主要内容及技术路线 |
1.5.1 研究的主要内容 |
1.5.2 研究的技术路线 |
1.6 本章小结 |
第二章 基坑支护体系及基坑稳定性分析 |
2.1 组合支护体系稳定性分析 |
2.1.1 组合结构力学分析 |
2.1.2 组合结构承受弯矩和剪力分析 |
2.1.3 组合结构型钢间距分析 |
2.2 支护结构上的土压力 |
2.2.1 多层土体的土压力计算 |
2.2.2 土体含有水时的水土压力计算 |
2.2.3 土拱效应 |
2.3 基坑及支护结构稳定性分析方法 |
2.3.1 支护结构稳定性 |
2.3.2 基坑稳定性分析 |
2.3.3 稳定性分析方法 |
2.4 本章小结 |
第三章 工程实例 |
3.1 工程概况 |
3.2 工程地质条件 |
3.3 受限空间兼具环形导流的基坑支护结构施工要点 |
3.4 本章小结 |
第四章 工程有限元分析 |
4.1 有限元分析软件简介 |
4.2 本构模型选择 |
4.3 深基坑有限元分析 |
4.3.1 有限元建模施工工况组简介 |
4.3.2 工程实例有限元分析 |
4.4 本章小结 |
第五章 支护体系优化分析 |
5.1 是否插入H型钢对基坑稳定性的影响 |
5.2 型钢插入方式对基坑稳定性的影响 |
5.3 型钢截面对基坑稳定性的影响 |
5.4 本章小结 |
第六章 工程监测数据分析 |
6.1 工程监测 |
6.1.1 工程监测的意义 |
6.1.2 基坑监测项目及监测频率 |
6.1.3 监测方法及监测点布设 |
6.1.4 监测结果分析 |
6.2 工程模拟计算与监测对比 |
6.3 支护体系选型分析 |
6.4 本章小结 |
第七章 结论与展望 |
7.1 结论 |
7.2 展望 |
参考文献 |
致谢 |
作者简介及读研期间主要科研成果 |
(10)考虑支护结构对基坑及邻近建筑变形影响分析(论文提纲范文)
摘要 |
Abstract |
注释说明清单 |
第一章 绪论 |
1.1 选题的背景、目的和意义 |
1.2 基坑支护结构的国内外研究现状 |
1.2.1 建筑基坑变形规律的研究现状 |
1.2.2 基坑支护结构对建筑物影响的研究现状 |
1.3 研究的主要内容与思路 |
1.4 本章小结 |
第二章 基坑及建筑桩基变形计算理论与影响因素 |
2.1 建筑基坑的变形机理 |
2.2 基坑支护结构的变形机理 |
2.2.1 地下连续墙变形理论 |
2.2.2 基坑内支撑的变形理论 |
2.3 建筑桩基在基坑工程中的变形计算理论 |
2.4 支护结构的变形影响因素 |
2.4.1 支护结构刚度因素 |
2.4.2 支护结构材料属性因素 |
2.5 本章小结 |
第三章 支护结构对基坑及邻近建筑变形分析 |
3.1 数值模型的建立 |
3.1.1 Midas GTS NX及 Orijin的简介与应用 |
3.1.2 工程概况 |
3.1.3 工程地质及水文条件 |
3.1.4 模型材料与属性 |
3.1.5 支护结构选取与工况计算 |
3.2 基坑支护体系对围护结构数值模拟分析 |
3.2.1 地连墙厚度对围护结构影响分析 |
3.2.2 内支撑材料对围护结构影响分析 |
3.3 基坑支护体系对基坑及环境数值模拟分析 |
3.3.1 地连墙厚度对基坑隆起和地表沉降影响分析 |
3.3.2 内支撑材料对基坑隆起和地表沉降影响分析 |
3.4 基坑支护体系对邻近建筑变形分析 |
3.4.1 地连墙厚度对邻近建筑影响分析 |
3.4.2 内支撑材料对邻近建筑影响分析 |
3.5 现场监测分析 |
3.5.1 监测目的与条件 |
3.5.2 监测方案与实施要求 |
3.5.3 监测结果对比分析 |
3.6 本章小结 |
第四章 基坑影响区的邻近建筑优化分析 |
4.1 基于本工程邻近建筑的变形特点与优化讨论 |
4.2 优化思路与理论依据 |
4.3 土体参数对地层及桩基的影响分析 |
4.4 本章小结 |
第五章 结论与展望 |
5.1 结论 |
5.2 展望 |
参考文献 |
致谢 |
作者简介及在校期间科研成果 |
四、基坑支护综合处理技术(论文参考文献)
- [1]桩锚支护作用下深基坑变形监测分析[D]. 苏颜曦. 西安科技大学, 2021(02)
- [2]列车振动荷载作用下基坑支护结构动力响应的研究[D]. 燕啸东. 西安理工大学, 2021(01)
- [3]深基坑开挖对环境及毗邻隧道安全影响及控制措施的研究[D]. 郝宇. 北方工业大学, 2021(01)
- [4]复杂环境下综合管廊深基坑支护优选及监测[D]. 邹正. 四川师范大学, 2021(12)
- [5]深基坑“岩土结构化”永久支护体系研究与实践[D]. 邢宏侠. 山东大学, 2021(09)
- [6]基于价值工程的临近既有隧道深基坑支护方案优选研究[D]. 兰文臣. 北京交通大学, 2021(02)
- [7]昆明某软土深基坑支护方案优选与研究[D]. 李晓怡. 昆明理工大学, 2021(01)
- [8]软土地层深基坑开挖变形监测与数值模拟分析[D]. 尹幸乐. 西南科技大学, 2021(08)
- [9]受限空间兼具环形导流的基坑支护体系稳定性研究[D]. 束永峰. 安徽建筑大学, 2021(08)
- [10]考虑支护结构对基坑及邻近建筑变形影响分析[D]. 刘成. 安徽建筑大学, 2021(08)