算法实践鸡兔同笼问题报告

算法实践鸡兔同笼问题报告

问:帮帮忙。鸡兔同笼的研究报告。500字左右。不要太复杂
  1. 答:鸡兔同笼是中国古代的数学名题之一。大约在1500年前,《孙子算经》中就记载了这个有趣的问题。书中是这样叙述的:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头,从下面数,有94只脚。问笼中各有几只鸡和兔?
    算这个有个最简单的算法。
    (总脚数-总头数×鸡的脚数)÷(兔的脚数-鸡的脚数)=兔的只数
    (94-35×2)÷2=12(兔子数) 总头数(35)-兔子数(12)=鸡数(23)
    解释:让兔子和鸡同时抬起两只脚,这样笼子里的脚就减少了头数×2只,由于鸡只有2只脚,所以笼子里只剩下兔子的两只脚,再÷2就是兔子数。
  2. 答:hskvdldhvkg
  3. 答:????和????是不可以在一个笼子里的
问:c语言里鸡兔同笼的算法问题
  1. 答:这个很简单呀,假设鸡的只数为x,兔的只数为y
    x+y=h总头数
    2x+4y=f总脚数(鸡2只脚,兔4只脚)
    解这个方程式
    可以算出
    x=2h-1/2f
    y=1/2f-h
问:算法设计,算法思路描述,并编写代码鸡兔同笼问题
  1. 答:#include<stdio.h>
    void main()
    {
    int h,f,x,y;
    h=16;
    f=40;
    y=(f-2*h)/2;
    x=h-y;
    printf("鸡=%d,兔=%d\n",x,y);
    }
    这是已经编写好了,鸡兔的头和脚也编写在程序里面了,现在我要得到这样的一个结果,通过程序运行时的提示输入鸡兔的头和脚的数量,最后才得出结果
问:鸡兔同笼算法
  1. 答:鸡兔同笼解题新方法,运用公式可快速求出兔子数量,这种方法你知道吗?
问:实现鸡兔同笼问题的关键算法?
  1. 答:x为鸡的数量,y为兔的数量。
    2x+4y=m,
    x+y=n。
    求解:x和y?
    关键其实就是求解二元方程的过程。
  2. 答:鸡兔同笼问题几种不同的解法
    一、鸡兔同笼问题
    例1 笼中有若干只鸡和兔,它们共有50个头和140只脚,问鸡兔各有多少只?
    解法1 假设法
    假设一个未知数是已知的,比如假定50个头全是兔,则共有脚(4×50=)200(只),这与题中已知140只不符,多出(200-140=)60(只),多的原因是鸡当兔后每只鸡多算了2只脚,所以鸡的只数是(60÷2=)30(只),则兔的只数为(50-30=)20(只)。
    这种解法,思路清晰,但较复杂,不便操作。能不能形象地画个图呢?让我们试试。
  3. 答:结果,如果不是整数,就是无解了。
算法实践鸡兔同笼问题报告
下载Doc文档

猜你喜欢